flowchart TD subgraph one[ ] A(linear models)--> A1(Linear regression) A --> A2(Polynomial Regression) A --> A3(Logistic Regression) A --> A4(Perceptron) end style one fill:#82c4c3,stroke-width:0px; classDef boxes stroke-width:0px; class A,A1,A2,A3,A4 boxes;
Structure of the lectures
flowchart TD subgraph three[ ] C(A Probabilistic View on Machine Learning)--> C1(Review Probability) C-->C2(Likelihood) C-->C3(Kullback Leibler Divergence) C-->C4(Linear Regression) end style three fill:#f6d887,stroke-width:0px; classDef boxes stroke-width:0px; class C,C1,C2,C3,C4 boxes;
flowchart TD subgraph two[ ] B(Neural Networks)--> B1(Perceptron) B-->B2(Deep Neural Networks) B-->B3(Automatic Differentiation) end style two fill:#82c4c3,stroke-width:0px; classDef boxes stroke-width:0px; class B,B1,B2,B3,B4 boxes;