Optimizers

This module contains the optimizers

source

gradient_descent

 gradient_descent (x:numpy.ndarray, y:numpy.ndarray, pini:dict, ll:dict,
                   niter=1000, eta=0.001)
Type Default Details
x ndarray x data of N elements
y ndarray y data of N elements
pini dict initial parameters of the loss function
ll dict dictionary with the loss (‘loss’), the gradients (‘grads’) and the function (‘fun’) for the regression/classification
niter int 1000 number of iterations
eta float 0.001 learning rate
Returns dict dictionary containing the vector of the losses (‘loss’) and the parameters (following the keys of pini)

source

sgd_epoch

 sgd_epoch (x:numpy.ndarray, y:numpy.ndarray, pini:dict, ll:dict, bs=10,
            eta=0.001)
Type Default Details
x ndarray x data of N elements
y ndarray y data of N elements
pini dict initial parameters of the loss function
ll dict dictionary with the loss (‘loss’), the gradients (‘grads’) and the function (‘fun’) for the regression/classification
bs int 10 Batch size
eta float 0.001 learning rate
Returns dict dictionary containing the vector of the losses (‘loss’) and the parameters (following the keys of pini)

source

sgd

 sgd (x:numpy.ndarray, y:numpy.ndarray, pini:dict, ll:dict, bs=10,
      eta=0.001, niter=1000)
Type Default Details
x ndarray x data of N elements
y ndarray y data of N elements
pini dict initial parameters of the loss function
ll dict dictionary with the loss (‘loss’), the gradients (‘grads’) and the function (‘fun’) for the regression/classification
bs int 10 Batch size
eta float 0.001 learning rate
niter int 1000 number of epochs
Returns dict dictionary containing the vector of the losses (‘loss’) and the parameters (following the keys of pini)