Loss functions and gradients

This module contains the loss functions and the gradients

Loss function


source

MSE

 MSE (x:numpy.ndarray, y:numpy.ndarray, fun:<built-infunctioncallable>,
      params=None)

Given the data \(x\) and \(y\), this function computes the mean square error between \(y\) and \(y'=f(x)\)

Type Default Details
x ndarray x data of N elements
y ndarray y data of N elements
fun callable function \(y=f(x)\)
params NoneType None Parameters of the function in the form of a dictionary
Returns float

The mean square error is defined as \[ MSE(y,y')=\frac{1}{N}\sum_{i=1}^{N}(y'_i-y_i)^2.\]


source

grad_MSE_lr

 grad_MSE_lr (x:numpy.ndarray, y:numpy.ndarray, params:dict)

Computes the gradient of the mean square error loss function with respect to \(a\) and \(b\) and returns np.array([\(\partial_a\) MSE,\(\partial_b\) MSE])

Type Details
x ndarray x data of N elements
y ndarray y data of N elements
params dict Parameters of the function
Returns ndarray gradients

source

grad_MSE_pr

 grad_MSE_pr (x:numpy.ndarray, y:numpy.ndarray, params:dict)

Computes the gradient of the mean square error loss function with respect to \(a\) and \(b\) and returns np.array([\(\partial_a\) MSE,\(\partial_b\) MSE])

Type Details
x ndarray x data of N elements
y ndarray y data of N elements
params dict parameters of the function
Returns ndarray gradients

source

BCE

 BCE (x:numpy.ndarray, y:numpy.ndarray, fun:<built-infunctioncallable>,
      params:dict)

Given the data \(x\) and \(y\), this function computes the mean binary cross entropy \(y\) and \(y'=f(x)\)

Type Details
x ndarray x data of N elements
y ndarray y data of N elements
fun callable function \(y=f(x)\)
params dict Parameters of the function
Returns float

source

grad_BCE

 grad_BCE (x:numpy.ndarray, y:numpy.ndarray, params:dict)

Computes the gradient of the binary cross entropy loss function with respect to \(a\) and \(b\) and returns np.array([\(\partial_a\) BCE,\(\partial_b\) BCE])

Type Details
x ndarray x data of N elements
y ndarray y data of N elements
params dict Parameters of the function
Returns ndarray gradients

source

L_per

 L_per (x:numpy.ndarray, y:numpy.ndarray, fun:<built-infunctioncallable>,
        params:dict)

Given the data \(x\) and \(y\), this function computes the Loss of the perceptron algorithm

Type Details
x ndarray x data of N elements
y ndarray y data of N elements
fun callable function \(y=f(x)\)
params dict Parameters of the function
Returns float

source

grad_per

 grad_per (x:numpy.ndarray, y:numpy.ndarray, params:dict)

Computes the gradient of the perceptron loss function and returns np.array(grad_w)

Type Details
x ndarray x data of N elements
y ndarray y data of N elements
params dict Parameters of the function
Returns ndarray gradients